DENSITY BOUNDS FOR SOLUTIONS TO DIFFERENTIAL EQUATIONS
DRIVEN BY GAUSSIAN ROUGH PATHS

BENJAMIN GESS, CHENG OUYANG, AND SAMY TINDEL

ABSTRACT. We consider finite dimensional rough differential equations driven by centered
Gaussian processes. Combining Malliavin calculus, rough paths techniques and interpolation
inequalities, we establish upper bounds on the density of the corresponding solution for any
fixed time ¢t > 0. In addition, we provide Varadhan estimates for the asymptotic behavior
of the density for small noise. The emphasis is on working with general Gaussian processes
with covariance function satisfying suitable abstract, checkable conditions.
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1. INTRODUCTION

Let p, be the density of the solution Y;? to a stochastic differential equation

¢ d_ pt
vi=e [vavas+ 0 [ s (1
0 i=1 70

driven by a d-dimensional Brownian motion B, where z € R" is a given initial condition and
Vo, ..., Vg are smooth vector fields on R”. In this classical setting and under non-degeneracy
conditions on the vector fields Vj, . .., Vy, it is a well-know fact that p; behaves like a Gaussian
density. Such results can be obtained by considering the PDE governing p;, which relies on
the Markovian nature of (1). Alternatively, due to the celebrated proof of Hérmander’s
theorem by Malliavin [25], more probabilistic tools have been used in order to analyze laws
of solutions to stochastic differential equations. This kind of technology has paved the way
to the extension of such results to a much broader class of differential equations, such as
delayed equations |6, 14] and stochastic PDE (see e.g [1, 28, 30] among many others).

While the above equation (1) is restricted to Brownian noise, Terry Lyons’ theory of rough
paths allows to study more general stochastic differential equations of the type

¢ d ¢
77 = z+/ %(Zj)ds+2/ Vi(ZZ)dXx:, (2)
0 i=1 70

driven by general p-rough paths X. Among the processes X to which the abstract theory of
rough paths can be applied, fractional Brownian motion has attracted a lot of attention in
recent years. Indeed, based on several recent works in this direction, the law of the solution
to (2) driven by fractional Brownian motion is now fairly well understood. Important results
in this direction include the existence of a density, smoothness results, Gaussian bounds,
short time asymptotics, invariant measures, hitting probabilities and the existence of local
times (see 2, 8, 10, 5, 4, 22, 19, 3, 24| and the references therein).

Much less is known for differential equations (2) driven by general Gaussian processes.
This is in contrast to the theory of rough paths, which covers a lot more than fractional
Brownian motion. In fact, the existence of a rough path lift for Gaussian processes is
naturally related to the existence of 2-d Young type integrals for the covariance function
R, as highlighted in [17] and improved in [12] based on mixed variations of R. In addition,
in [12] the applicability to a wide variety of Gaussian processes, such as Gaussian random
Fourier series and bifractional Brownian motions is shown, hence allowing to give a meaning
and solve equations of the form (2) in this general framework. Further studies of differential
equations driven by general Gaussian processes include Hormander type theorems under
general local non-determinism type conditions on the covariance R (see [10]).

The current article is a further development towards a more complete description of dif-
ferential equations (2) driven by general Gaussian processes. More precisely, we consider
(2) driven by a Gaussian process X satisfying appropriate general, checkable conditions.
Assuming ellipticity conditions on the vector fields Vj, ..., V; and natural conditions on the
covariance R, we prove that the density of Z; admits a sub Gaussian upper bound (Theorem
3.4 below). Moreover, we show in Theorem 4.7 below that the density satisfies Varadhan
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type estimates for small noise. The proof of the above results is based on stochastic anal-
ysis tools and, more specifically, on an integration by parts formula which gives an exact
expression for the density function in terms of the Malliavin derivatives and the Malliavin
matrix of Z. Thus, a large part of the paper is devoted to obtaining precise estimates for
the Malliavin derivative and Malliavin matrix.

The assumptions on the driving Gaussian process are quite standard in the rough paths
literature and can be divided into the following two groups:

(i) Similarly to [12|, we assume that the covariance function R has finite mixed (1, p)-
variation for some p € [1,2) in order to ensure that the driving process X admits a rough
path lift and complementary Young regularity is satisfied.

(i) In order to analyze the inverse of the Malliavin matrix of the solution Z, we rely on
interpolation inequalities for the Cameron-Martin space related to X (see Proposition 2.23
below), which in turn rely on monotonicity conditions on the increments of the covariance
R (see Hypotheses 2.18 below) and so-called non-determinism conditions (Hypothesis 2.21
below), which have already been used in [10].

The rest of the paper is organized as follows. In Section 2, we provide some basic tools
from Malliavin calculus and rough path theory that will be needed later. We also set up
corresponding notations in this section. Section 3 is devoted to obtaining the upper bound of
the density, while Section 4 focuses on Varadhan estimates. Finally, in Section 5, we provide
several examples of Gaussian rough paths that satisfy the general assumptions supposed in
the main body of this work.

Notations: Throughout this paper, unless specified otherwise, we denote Euclidean norms
by |-]. The space of R"-valued ~-Hélder continuous functions defined on [0, 7] will be denoted
by C7([0,7],R™) and C” for short. For a function ¢ € C?([0,7],R") and 0 < s <t < T, we
shall consider the semi-norms
|gv - gu|
S — (3)

. = su .

Generic universal constants will be denoted by ¢, C' independently of their exact values.

2. PRELIMINARY MATERIAL

This section contains some basic tools from Malliavin calculus and rough paths theory, as
well as some analytical results, which are crucial for the definition and analysis of equation

2).

2.1. Rough path above X. In this section we shall recall the notion of a rough path above
a signal z, and how this applies to Gaussian signals. The interested reader is referred to
[15, 17, 18] for further details.

For s < ¢t and m > 1, consider the simplex A7 = {(u1,...,uy) € [s,t]™; up < -+ < up},
while the simplices over [0, 7] will be denoted by A™. The definition of a rough path above
a signal x relies on the following notion of increments.
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Definition 2.1. Let k > 1. Then the space of (k — 1)-increments, denoted by Ci([0,T], R"™)
or simply Cr,(R™), is defined as

Cr(R") = {geO(Ak;R") lm gy, =0, z<k—1}

t; —>t1+

We now introduce a finite difference operator called §, which acts on increments and is useful
to split iterated integrals into simpler pieces.

Definition 2.2. Let g € C1(R™), h € C3(R™). Then for (s,u,t) € A3, we set
5gst = gt — Gs; and 5hsut = hst - hsu - hut-

The regularity of increments in Cy will be measured in terms of p-variation as follows.

Definition 2.3. For f € Co(R™), p > 0 we set

1/p
[ lp—var = [|.fllp—var;o,ry = Sup (Z | fritian|” ) )

where the supremum is taken over all subdivisions II of [0,T]. The set of increments in
Co(R™) with finite p-variation is denoted by C5 " (R™).

With these preliminary definitions at hand, we can now define the notion of a rough path.

Definition 2.4. Let x be a continuous R%-valued path with finite p-variation for some p > 1.
We say that x gives rise to a geometric p-rough path if there exist

{Xn“’ 7n7 S t)EA27n§ ijvzhvllne{l?’d}}’

such that x}, = dxg and

(1) Regularity: For all n < |p], each component of X* has finite L -variation in the sense of
Definition 2.3.

(2) Multiplicativity: With 0x™ as in Deﬁm’tz’on 2.2 we have

n;iy n177'17 72n1 n— n17Z7L1+17 in
X' = E . (4)

sut
ni=1

(3) Geometricity: Let x° be a sequence of piecewise smooth approximations of x. For any
n < |p| and any set of indices iy, ...,i, € {1,...,d}, we assume that x=™""n converges
in Z-variation to x™" " where X5 i is defined for (s,t) € Ay by

i1, in €41 ., . JoEsin
X = / dr) dx'".
(U‘lv"'vufb)eAgt

Hypothesis 2.5. Let x be a continuous R%-valued path with finite p-variation for p > 1.
We assume that x gives rise to a geometric rough path in the sense of Definition 2.4.

We can now state the main theorem concerning the existence and uniqueness of the solution
to a rough differential equation. We refer the reader to [15, 18] for its proof.
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Theorem 2.6. Let X be a geometric p-rough path and Vg, ..., Vy be C7-Lipschitz continuous
vector fields in R™ for some v > p > 1. For e > 0, let Z¢ be the unique solution of the
following ordinary differential equation on [0,T]

t d ot
zi==+ [ vzis+ Y [ vizax, (5)
0 i=1 70

where X¢ is a piecewise linear approximation of X as in Definition 2.4. Then Z¢ converges in
p-variation to a path Z, which can be seen as the unique solution of equation (2) understood
in rough path sense.

Now we assume that X; = (X}, ..., X) is a continuous, centered Gaussian process with
i.i.d. components, defined on a complete probability space (€2, F,P). The covariance function
of X, is defined as follows

R(s,t) =E[XIX]], (6)
where X7 is any of the components of X. We shall also use the following notation in the
sequel

ol =E [(Xt’)z] , and o), :=E [(5th)2] . (7)

A lot of the information concerning X is encoded in the rectangular increments of the
covariance function R, which is given by

Ry, =E[(X] - X)) (X] - X))]. (8)
The 2D p-variation of R on a rectangle [0, ]? is given by

V,(R;[0,t]?) := sup (Z ’ Ry
where II is the set of partitions of [0,7]. For simplicity, we denote V,(R) = V,(R;[0,7]?)

in the following. The following result (borrowed from [17]) relates the p-variation of R with
the pathwise assumptions allowing to apply the abstract rough paths theory.

1/p
) » (s0), (t;) € 1L o, (9)

Proposition 2.7. Let X = (X',...,X9) be a continuous, centered Gaussian process with
i.i.d. components and covariance function R defined by (6). If R has finite 2D p-variation
for some p € [1,2), then X satisfies Hypothesis 2.5, provided p > 2p.

As a direct application of Theorem 2.6 and Proposition 2.7, we notice that whenever a
Gaussian process X admits a covariance function R with finite 2D p-variation (and p €
[1,2)), then equation (2) driven by X admits a unique solution in the rough path sense. In
the sequel we shall give some information about the law of this solution Z.

2.2. Wiener space associated to general Gaussian processes. In this section we con-
sider again the continuous, centered Gaussian process X of Section 2.1. Recall that its
covariance function R is deﬁned by (6). Our analysis is based on two different (though
related) Hilbert spaces H, H. Roughly speaking, the space H is the usual Cameron-Martin
(or reproducing kernel Hilbert) space of X, while H is the space allowing a proper definition
of Wiener integrals as defined e.g in [27].
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The Cameron-Martin space H is defined to be the completion of the linear space of func-

tions of the form
:{ZGZR(tZ,), aiGRandtiE[O,T]},
i=1

with respect to the following inner product

n m

<zn:aiR(ti,'),zm:bjR(sj,- > ZZa,b]R (tiys5) . (10)

=1 j=1

The space H is defined similarly, but this time we are considering the completion of the set

of step functions
= {Z a'i]-[O,ti} L a; € ]R, tz € [O,T]} s

i=1
with respect to the inner product

<Z ail[&an 0,5,] > ZZazb R (i, s;). (11)
i=1 ”

j=1 =1 j=1

Remark 2.8. Let Xy = 0 and thus R(0,0) = 0. Then, as suggested by (11), for any hy, hy € H,

we have

<h1, h2>7.[ = /(; /0 h1(8>h2(t>dR(S, t), (12)

whenever the 2D Young’s integral on the right-hand side is well-defined (see, e.g., |9, Propo-
sition 4| for details).

Since H is the completion of & w.r.t (-,-),,, it is obvious that the linear map R : & — H
defined by

R (1pg) = R(t,") (13)
extends to an isometry between H and H. We also recall that H is isometric to the Hilbert
space H' (Z) C L*(Q, F,P) which is defined to be the || 12(q)-closure of the set

{Zé_l a; Xy, ca; €R, t;€[0,T], ne N}_

In particular, we have that }1[071&] | 2 = | Xtlp2(q)- The isometry generated by (13) is denoted
by X (¢), and is called Wiener integral.

Remark 2.9. Since the space H is a closure of indicator functions, it is easily defined on any
interval [a,b] C [0,7]. We denote by H([a,b]) this restriction. For [a,b] C [0,T], one can
then check the following identity by a limiting procedure on simple functions

(Lot 9Lap) s = {Fs Dugan) (14)

The rough path analysis of Gaussian processes relies heavily on embedding results for the
Cameron-Martin space H into spaces of functions of finites p-variation. In the following we
shalll recall a recent embedding result from [12]. To this aim, let us recall the definition of
the mixed (7, p)-variation given in [32].
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Definition 2.10. For a general continuous function R : [0,T]> — R and two parameters

v,p > 1, we set
) , (15)

where D([s,t]) denotes the set of all dissections of [s,t] and where we have set

)
o =

V. ,(R; s, t] X |u,v|) :==  sup ‘ “+1
Yoo (L5 [, 8] X [u, v]) W <Z i
(t;)E€D([uv]) g

(A

R5 = Rltin, ) = Rt 1) — R(ti £4) + Rt 1)),

iti+1

Observe that, whenever the function R in Deﬁnition 2.10 is given as a covariance function

as in (6), then the rectangular increment Rtjtfl is given by (8). In addition, the p-variation

of R introduced in (9) and invoked in Proposition 2.7 is recovered as V, =V, ,. As a last
elementary remark, also notice that

Vive(B; A) SV, (5 A) < Vi, (R A),
for all rectangles A C [0, T]*. We set, for future use
Koy = Vip(Rs[s,1]°), and &} :=Vi,(R;[0,1]°). (16)

With these elementary notions at hand, we next introduce an hypothesis which allows
the use of both rough paths techniques and tools from stochastic analysis for the underlying
process.

Hypothesis 2.11. Let X be a d-dimensional continuous, centered Gaussian process with
i.i.d. components and covariance R defined by (6). We assume that the function R admits a
finite mized (1, p)-variation, as introduced in Definition 2.10, for some p € [1,2).

Remark 2.12. Since the mixed (1, p)-variation of R controls V,(R), Proposition 2.7 and
Hypothesis 2.11 imply the existence of a rough path lift of X to a p-variation rough path
with p > 2p.

Definition 2.13. Given p € [1,2), we say that R has finite Holder-controlled mized (1, p)-
variation if there exists a C' > 0 such that for all 0 < s <t < T we have

Vip(Bi[s.1]*) < Ot —5)"".

Remark 2.14. An important consequence of R having finite Holder-controlled mixed (1, p)-
variation is that X has 1/p-Holder continuous sample paths for every p > 2p. This will be
needed in order to obtain the interpolation inequality in Proposition 2.23 below which plays
an important role in the analysis.

Remark 2.15. Similarly to the argument in [10, Remark 2.4], for any process X satisfying
Hypothesis 2.11, one can introduce a deterministic time-change 7 : [0,7] — [0, 7] such that
X = X o7 has finite Hélder-controlled mixed (1, p)-variation.

We are now ready to recall an embedding result for the Cameron-Martin space H, obtained
in [12].
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Theorem 2.16. Let X be a centered Gaussian process satisfying Hypothesis 2.11 and recall
that H is defined by the inner product (10). Then there is a continuous embedding

_ 1
H — Cq—Var’ with q = T 1 < 2.
— _'_ =
2p 2
More precisely, the following inequality holds true
Hth—var;[&t} < Kyt HhH?-_La ‘v’[s,t] - [O’T]’

where the constant ks, is defined by (16).

Finally we can give a statement which will be the basis of the interpretation of several
integrals related to Malliavin derivatives

Corollary 2.17. Let X be a centered Gaussian process satisfying Hypothesis 2.11 for a given
p € [1,2), let H be the Cameron-Martin space related to X and let e € (0,2—p| small enough.
Then

(i) The process X gives rise to a finite p-variation rough path for p = 2p + €.

(ii) The spaces_’}-_[ and CP~¥* satisfy Young’s complementary condition. Namely, there exists
a q such that H is embedded in CI=" and such that p~* + ¢~ 1 > 1.

Proof. Ttem (i) follows from Remark 2.12. As far as item (ii) is concerned, we invoke Theorem
2.16 and we take ¢ = (i + 3)~'. Since p < 2 and since we have chosen p = 2p + ¢ with ¢

small enough, it is easily checked that p~! 4+ ¢! > 1.
O

2.3. Interpolation inequalities. Interpolation inequalities involving Cameron-Martin spaces
are crucial in order to bound Malliavin derivatives which appear in density formulae. In this
section we derive such inequalities for a general Gaussian process, under conditions intro-
duced in |10, 12]. The first condition we shall impose concerns correlations of increments.

Hypothesis 2.18. Let X be an R%-valued centered Gaussian process X with i.i.d. coordinates
and covariance function R. In the sequel we assume that:

(i) X has non-positively correlated increments, that is, for all (ty,ts,t3,t4) € A* and every
coordinate j = 1,...,d we have

RP =E[6X],,6X],] <o. (17)

(ii) The covariance R is diagonally dominant. That is, for all (ti,ty,ts3,t4) € At and every
coordinate j = 1,...,d we have
Riji; = E[0X]

tats

0X},,] 2 0. (18)

With this Hypothesis at hand, we start with some inequalities which stem from the
Cameron-Martin embedding Theorem 2.16.

Proposition 2.19. Let X be a continuous, centered Gaussian process starting from zero,
with i.1.d. components and covariance function R satisfying Hypothesis 2.11. Further, let

q= (% + 2)7! and consider p > 1 such that 1/p+1/q > 1. Then
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(i) There exist constants ¢y, co > 0 such that for every f € H and t € (0,T], we have
£ 10,015 < 2 ki (1F Loallp—var + 1/ 100 l15) -

where k; is as in (16).

(ii) Assume that X satisfies Hypothesis 2.18 and let C7 be the space of ~y-Hélder continuous
functions. Then, for any continuous f € HNCY with 1/p+~v > 1,

I30alf > [ F00RGD > of minl T, (19)
where o? is as in (7).
Remark 2.20. Equation (19) above is in fact a consequence of [10, Proposition 6.6], by taking
s =0 and t =T therein. We have included a more elementary proof here for sake of clarity.

Proof of Proposition 2.19. We prove the two items of this proposition separately.

Proof of (i). Recall that the spaces H([a,b]) are introduced in Remark 2.9. As mentioned
in [29], the following relation holds true for any hy, hy € H([0,])

t
(P, ha) w0, =/ hidRhs,
0

where the right hand side is understood in the Young sense and R is the isometry going from
H([0,t]) to H([0,t]), as given in relation (13). Hence, if p~* + ¢~! > 1, classical inequalities
for Young’s integral imply

[(h1s h) o] < CURallp—varso.0 + 11 locs0,0) IRA2 | g—var;j0,1- (20)
We now use Theorem 2.16 to get the bound
IR llg—varfo.) < ke [IRh2ll70.0) = K [[h2ll20.);

where we recall that we have set k7 = Vi ,(R; [0,t]?). Plugging this information back into (20)
and choosing hy = hy = f, we obtain

1 B0 = IFs Haoanl < CUSNlp—varion + 1f o) IR llg—vargo
< CRi([[ fllp—varsto.n + 1 Flloosto.) 1 lect0.0)-
Dividing this expression by || f{|#((o,q) finishes the proof of claim (i).

Proof of (ii). We first prove the claim for elementary step functions. Namely, consider ¢ < T,
a partition (¢;) of the interval [0, ], and set

1 t} == Z ail[ti,ti+1}'
Then the following identity obviously holds true
titi
Hfl[oﬂ H%L = Z a;a; <1[ti¢i+1}v 1[tj¢j+1]>7-[ = Z aiathj7th1'
i,7 2%

We now separate diagonal and non-diagonal terms in order to get

ti,ti titi
/1047 = E E aia; Ry + E aiRi it > Sp— S, (21)
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where S; and S are defined by
titi
ZaQRtl oy, and Sy = ZZ la;||a;] |R
i jF#

Next, in order to bound S, from above, we first invoke the elementary inequality 2|a;||a;| <
tz 7t1+1

lai|* + |a;|* to get
=D D) AL ARES D) B

i gFi i jF

t27tz+1
titjy1| "

t17t1+1
i1 |-

Then, using (17), we get
t'utz t'utz _ t'utz
D) LIRS LIRS ») W
(A i jA (=
Inserting this in (21) yields
||f1[0 t]”?—t > Za2Rt“tl::1 _ Z 2Rt tz+1‘ (22)
7]

Let us observe that, owing to the diagonal dominance assumption (18), the measure R(dr,t)
defined by

R([u,v],t) := Ry,

is non-negative. Furthermore, one can recast inequality (22) as

110l > j/lf R(dr, ).

Using elementary properties of positive measures, we thus end up with
1 2 > min 2R = min | |02
170 B = i | £°7 = wmin £ Po?.
which proves the claim (ii) for elementary functions f. Finally, we show that the above
remains true all f € HNCY. Let D ={t; : i =0,1,...,n} be any partition of [0, 7], and set
fo(t) = f(t),t; <t <tiy1. Since fp is an elementary function, we have

fo(s)fo(t)dR(s,t) = || foliogll3 > min|fp|*o?

[0,2]2 [0,1]

Note that we assume f € C” with 1/p+~ > 1. The left hand-side of the above display is the
Riemann sum approximation to the 2D Young integral of f against R along the partition
D. Hence, if we shrink the mesh of the partition D,

o IPODOARE D > | J)OR(0) = 1/ Toa

On the other hand, minyy |fp| — minjy |f|, when shrinking the mesh of D, by the con-
struction of fp and the fact that f is continuous. The proof is thus completed. O

We now wish to get a non-degeneracy result for the norm in 4, that is, a lower bound on
| fll3 involving || f||s. This requires the following additional hypothesis.
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Hypothesis 2.21. Let (X;)icjor) be a centered continuous R?-valued Gaussian process. For
any 0 < a <b<T, denote by F, the following o-algebra
Fop =00Xu :a<u<uv<bh).

Then we assume that there exists an o > 0 such that
. 1
OS;E{ST WVM ((5X3t|f0’s V .EJ‘) =cx > 0. (23)

We call the smallest v that satisfies the above condition the index of non-determinism.

Remark 2.22. Note that since we are working with Gaussian processes, the above conditional
variance Var (0. X|Fo s V Frr) is deterministic. Moreover, assuming Hypothesis 2.21 holds
true and setting s = 0 in (23), the law of total variance gives us

Ut2 = Var (Xt) 2 Var (5X0t|f070 V E,T) 2 Cxta,

with o7 as in (7).

With Hypothesis 2.21 at hand, we borrow the following interpolation inequality from |10,
Corollary 6.10].

Proposition 2.23. Let (X)icj0.1] be a continuous Gaussian process starting from zero with
covariance function R : [0,T]* — R. Suppose Hypothesis 2.18 and 2.21 are satisfied. Fur-
thermore, we assume that R has finite Hélder-controlled mized (1, p)-variation for some
p € [1,2) in the sense of Definition 2.13. Then there exists a universal constant ¢ such that
for any f € CV([0, T],R) with v+ 1/p > 1, we have

1 llooory < 2max { W2t Ly oot i (24)
oosf0,7] < 2max or \/& H (0,17 (2

where cx is the constant appearing in equation (23) and o, is defined by (7).
Remark 2.24. In [10], relation (24) is proved under the following additional hypothesis
Cov (X 1 Xyl Fos V Frs) >0, (25)

for any [u,v] C [s,t] C [0,S] C [0,7]. However, we are working here under the standing
assumptions (17), (18) in Hypothesis 2.18, and it is shown in [10, Corollary 6.8| that (17)
together with (18) implies (25).

Remark 2.25. Our interpolation inequality (24) also reads as

o7 || fllocifor) . 2(2) ™ 1fllor

||f||H2f[]mm 1, (%) i[ ]
N [

(0,7}

In fact we will use a slight generalization of (26) in the sequel. Namely, for all t < T,

Remark 2.9 asserts that || f1ljogllw = |[fll#(o,9)- We thus get the following interpolation
inequality

(26)

27+«

2(5) " I£11Z 0

o >
t 11304

ol fllsotos

1 (27)

| fLoglln >
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2.4. Malliavin calculus for Gaussian processes. In this section we review some basic
aspects of Malliavin calculus. The reader is referred to [27| for further details.

As before X; = (X}, ..., X?) is a continuous, centered Gaussian process with i.i.d. compo-
nents, defined on a complete probability space (€2, F,[P). For sake of simplicity, we assume
that F is generated by {X;; t € [0,7]}. An F-measurable real valued random variable F' is
said to be cylindrical if it can be written, for some m > 1, as

F:f<Xt17---7Xtm)7 for O§t1<<tm§1,
where f : R™ — R is a C}° function. The set of cylindrical random variables is denoted
by S.

The Malliavin derivative is defined as follows: for F' € S, the derivative of F' in the
direction h € H is given by

=0
DhF: E a—j(tha"‘7Xtm) hti'
i=1 "

More generally, we can introduce iterated derivatives. Namely, if F' € §, we set

D} . F =Dy ...DyF.

k

For any p > 1, it can be checked that the operator D is closable from S into LP(€2; H®*).
We denote by D*P(H) the closure of the class of cylindrical random variables with respect
to the norm

o1, = (20mr SR (0P )

and we also set D*°(H) = Ny>1 Ng>1 DFP(H). The divergence operator §° is then defined to
be the adjoint operator of D.

Estimates of Malliavin derivatives are crucial in order to get information about densities
of random variables, and Malliavin matrices as well as non-degenerate random variables will
feature importantly in the sequel.

Definition 2.26. Let F' = (F',... F") be a random vector whose components are in D™ (H).
Define the Malliavin matriz of F' by

vr = ((DF, DF)3)1<ij<n- (28)
Then F is called non-degenerate if v is invertible a.s. and

(det ’}/F)_l c mPZle(Q).

It is a classical result that the law of a non-degenerate random vector F' = (F' ... F")
admits a smooth density with respect to the Lebesgue measure on R".

2.5. Differential equations driven by Gaussian processes. Recall that we consider the
following kind of equation

t d_ -t
z;:z+/ VO(Zj)ds+Z/ Vi(Z7)dX,, (29)
0 i=1 /0
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where the vector fields Vj, ..., V; are C;°-vector fields on R™ and X is a continuous, centered
Gaussian process with i.i.d. components. Throughout this section, we assume that the
covariance R has finite 2D p-variation for some p € [1,2). Hence, as mentioned in Section
2.1, Proposition 2.7 implies the existence and uniqueness of a solution to (29).

Once equation (29) is solved, the vector Z7 is a typical example of random variable which
can be differentiated in the Malliavin sense. We shall express this Malliavin derivative in
terms of the Jacobian J of the equation, which is defined by the relation J7 = 0., 2; )
Setting DV for the Jacobian of V; as a function from R" to R", let us recall that J is the
unique solution to the linear equation

t d t
J: :Idn—l—/ D%(Zg)JsderZ/ va(Zg)Jstg'. (30)
0 =1 70

We refer to [8, 11, 29| for the following integrability and differentiability result:

Proposition 2.27. Let X be a continuous, centered R*-valued Gaussian process with i.i.d.
components and covariance function R having finite 2D p-variation for some p € [1,2).
Consider the solution Z* to (29) and suppose that the vector fields V; are C;°. Then

(i) For any n > 1, there exists a finite constant ¢, such that the Jacobian J defined by (30)
satisfies

E (131 surorm| = 0 (31)

(ii) For everyi = 1,...,n, t > 0, and z € R", we have Z;"* € D>®°(H) and the Malliavin
derwative of Z wverifies

DIZ; =J3,,V;(Z2), j=1,...,d, 0<s<t, (32)

where Dng’i is the j-th component of D,Z7", and where we have set Joo =TI

3. UPPER BOUNDS FOR THE DENSITY

The aim of this section is to study upper bounds for the density of the solution to equa-
tion (29). Throughout this section X is a continuous, centered Gaussian process starting
at zero with i.i.d. components. In addition, we assume the following uniform ellipticity
condition on the vector fields.

Hypothesis 3.1. The vector fields Vi, ..., Vy of equation (29) are C*-bounded and form a
uniformly elliptic system, that is, for some A > 0,

vV (2)V*(2)v > Avl?, for all v,z € R", (33)
where we have set V- = (V})iz1,... nij=1,..d-

We further introduce
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Definition 3.2. Let X be a centered R*-valued Gaussian process with covariance R. We
assume that X satisfies Hypothesis 2.11. Let o, and k¢ be as in (7), (16). We define the
self-similarity parameter n, fort € (0,T] by

— Vi(R; [0, 1)) (ke ?
TR (a) | 34

Remark 3.3. The name self-similarity parameter for 7, stems from the fact that n; does not
depend on t whenever the Gaussian process X is self-similar. Hence, 1; can be interpreted
as quantifying the lack of self-similarity.

With these definitions at hand, we shall prove an upper bound for the density of X;, under
the ellipticity assumption (33).

Theorem 3.4. Let X be an Re-valued continuous, centered Gaussian process starting at
zero with i.1.d. components and covariance function R. Suppose that Hypotheses 2.11, 2.18,
2.21 and 3.1 are satisfied and let oy, ki, me be as in (7), (16), (34). Let Z* be the solution to
(29) driven by the Gaussian rough path lift X of X. Then for allt € (0,T], the density p; of
Z7 satisfies

e+ ly — 2"
pe(y) < tinexp ————— |, forally e R", (35)

for some ¢y, co > 0.

The reminder of this section is devoted to prove Theorem 3.4. Our global strategy is
highlighted in Section 3.1, while the main estimates are derived in Sections 3.2, 3.3 and 3.4.

3.1. Global strategy. Our starting point in order to get the upper bound (35) is the
following integration by parts type formula. Denote by C2°(R") the space of smooth functions
f such that f and all of its partial derivatives have at most polynomial growth.

Proposition 3.5. |27, Proposition 2.1.4| Let F = (F',...  F™) be a non-degenerate random
vector as in Definition 2.26. Let G € D* and ¢ be a function in the space C;°(R™). Then
for any multi-inder o € {1,2,...,n}*, k > 1, there exists an element H,(F,G) € D> such
that

E[0ap(F)G] = Elp(F)Ha(F, G)],

Moreover, the elements H,(F,G) are recursively given by

H(z FG 25° _1 Z] DF]) and H (F G) ak(F H(a1 )(FvG))v (36)

7777 A —1

andfor1§p<q<oowehcwe
1Ho(F.G)llp < cpallvr DG a1, I Gll5 g (37)

11
where = = =
> q—l—

3 =

As a consequence, one has the following expression for the density of a non-degenerate
random vector.
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Proposition 3.6. |27, Proposition 2.1.5| Let F = (F',...  F™) be a non-degenerate random
vector as in Definition 2.26. Then the density pr(y) of F belongs to the Schwartz space, and
for any o C {1,...,n},

pF(y) = (_l)n_|U|E[1{Fi>yi,iEU,Fi<yi,i¢U}H(l,...,n)(Fa 1)]a fO’f’ all (TS R™.

According to the above relation applied to F' = Z7 and o = {i € {1,...,n} : y* > z'},
and applying inequality (37) with &k = n,p = 2,r = g = 4, we obtain the following general
upper bound for the density p; of Z7

pe(y) < cP(ZF — 2| 2 ly — 22 | Ml e IDZE | oo, forally €R®, - (38)

where 7; denotes the Malliavin matrix of Z7. In the remainder of the section, we shall bound
separately the three terms in the right hand side of (38).

3.2. Tail estimates. This section is devoted to estimating P(|Z7 —z| > |y — z|) on the right
hand side of (38). Our main result in this direction is the following proposition.

Proposition 3.7. Let X be an R¥*-valued continuous, centered Gaussian process with i.i.d.
components satisfying Hypothesis 2.11 for some p € [1,2). Let 7 € (0,T], K, be as in (16)
and Z%, V be as in Theorem 3.4. Then there exists a constant co > 0 such that

z |y B Z|1+%
P(sup|zi =2 >y) <exp (L2 (39)
t<rt Co RZ

for all y € R™.

Proof. According to Proposition 2.7, which can be applied since the process X fulfills Hy-

pothesis 2.11, there is a rough path lift X of X as in Hypothesis 2.5. For p > 2p, define the
control wx , by

n 1/n
WX7p(S,t) = ||X||z—var;[s,t] = Z ||X ||%/—Var;[s,t]' (40)
n<|p]
Then [17, Lemma 10.7| asserts that
12 -varsos < ev (loxals, 0177V ioxp(s,)) (41)
In particular, for any t; < t;;; we have
|5Zt2iti+1| <cvy ([WX,P(th ti+1)]1/p \% wX,P(tia ti-i-l)) : (42)

Consider now « > 1 and construct a partition of [0, ¢] inductively in the following way: we
set tp = 0 and

tjir = inf {u >t |IX| > a} . (43)

p—var;[t;,u] —
We then set N,:, = sup{n > 0;%, < t}. Observe that, since we have taken a > 1,
inequality (42) can be read as [0Z,,,,| < cv wx p(ti, tiy1) = cy o Hence
Nt p—1

|th - Z| < |th - ZtNayt’p| + Z |6Ztiti+1| S v (Noht,P + 1)' (44)
1=0
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By [11, Theorem 6.3] we have

2
P(Natp+1>n)Sexp (—Cp’q’oénq) , (45)

Kt

where g, is as in (16) and ¢ is the exponent given in Theorem 2.16 by % = ﬁ + % This easily
implies

14
P <s;1<1p 127 — 2| > 5) <P(cva(Nagzp+1)>E) Sexp (—%) , (46)
and thus the claim. O

3.3. Estimate for Malliavin derivatives. We now proceed to bound the Malliavin deriva-
tives involved in the right hand side of (38). We summarize the results in the following
proposition.

Proposition 3.8. Under the same assumptions as in Proposition 3.7, for all m € N and
p > 1 there exists a positive constant cy,, such that

125 lmp < Cmp fits (47)
where ky = Vi ,(R;[0,1]?)2 is as in (16).

Proof. We use a method by Inahama [21] to which we refer for more details. For simplicity,
we assume Vy = 0, and first show (47) for m = 1,2. The case Vj # 0 is treated similarly.
Recall that J is the Jacobian process.

Step 1: Ezpression for the Malliavin derivatives. Let X = (Xl, ...,Xd) be an independent
copy of X and consider the 2d-dimensional Gaussian process (X, X). The expectation with
respect to X and X are respectively denoted by E and E. Set

= :_ZJt/ IV (Z22)dX?,

and

d t

=2 . ZJt/ g {D%/j(zg) (Z1,2)) dX? + 2DV;(Z7)=), dXJ}
0
Then one can show that the following bounds hold true (for more details, see equations (2.8)
and (2.9) in [21], and the discussion after them),
IDZ; |ern < C(EIE; )2,
ID*Z; |Iusmern < C(EIZZ?)2.

Step 2: Bound for the first order derivative. We now estimate Z! by using general bounds
taken from the theory of rough paths. Namely, let

M= (X,X,2*3,37Y. (48)
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Then, M is a rough path obtained by solving an SDE driven by (X, X ). Hence, it is a p-rough
path for any p > 2p, where p is the exponent appearing in Hypothesis 2.11. Furthermore, the
integral [ J;'V(Z7)dX, is a rough integral of the type [ f(M)dM, where f has polynomial
growth. We deduce that for some r > 0, the following bound is verified

1025 < C(1+ [[M]lp—varjo.17)" Ml p—var[s.1) (49)
We now estimate ||M||,_yqer (s, appearing in (49). Note that both the Jacobian J and its
inverse J~! satisfy a linear RDE driven by X. Hence, we have the following growth-bound
(cf. |11, inequality (4.10)]),

19 lp—varso.0 + 1 lp—varsog < C'IIXllp-var.jo.g €xP (CNars) (50)
where N, ., is defined in [11, equation (4.7)] and has finite moments of any order. Thus,
gathering (50), inequality (41), the definition (48) of M and (49), we deduce that

|Ei| < C(IX|lp-var,o + ||X||p—var,[0,t]) exp (C'Nop) - (51)
We now invoke [16, Theorem 35-(i) and Corollary 66|, which asserts that
HHXHp—vaT’,[Qt} + HXHp—vah[O,t]HLq < Cqﬁt‘
First using Holder’s inequality in (51) and then the estimate above completes the proof of
(47) for m = 1.

Step 3: Higher order derivatives. In the same way as in Step 2, we estimate =2 as a rough
integral of the type [ ¢(M;)dM; where ¢ has polynomial growth and M is the rough path

Ml = (XvXa szJvJ_17El)
Arguing as before and using all the previous estimates, we obtain a bound of the same type
as (51)
|E§| < C([IX|p-var0.0 + 1Xlp-var,0,) €xP (CNatp) -

This easily yields the claim (47) for the case m = 2. Higher order Malliavin derivatives are
treated similarly by constructing processes =™, m > 2 inductively (see [21]). O

3.4. Estimates for the Malliavin matrix. We next provide an estimate for the inverse
of the Malliavin matrix v, in (38).

Proposition 3.9. Consider the solution Z# to (29) under the same conditions as in Theorem
3.4. Fort € (0,T], let v be its Malliavin matriz defined as in (28). Then, for all m € N
and p > 1 there exists a constant c,,, such that

_ Conp M1
e o < =051, (52)

t

where oy, n; are as in relations (7) and (34).

Proof. Without loss of generality, we will prove (52) for 0 < ¢ < 1. We divide the proof into
two steps.

Step 1: case m = 0. Let C} be the matrix defined by

a= [ [ avezviEy asyare.,
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By Remark 2.8 and (32), we have v, = J;C;J7. Therefore the upper bound on |, '(|, can
be easily deduced from the following inequality

y Cy > Mt0t2 |?/|2> for yeR", (53)

where M, is a random variable admitting negative moments of any order (see, e.g. 27,
Lemma 2.3.1]). To this aim, we first notice that

v Coy = floalz, with fu = V(Z5)"(T1)y. (54)
Furthermore, thanks to the interpolation inequality (27), we have
20 £112 g
0 1 f 5o . ex [1FI1,
||f1[0,t]’|3{ > #[M min q 1, 27&,[%] (55)
Ot Hf”;[o,t}

Next observe that, due to the uniform ellipticity condition |V (x)y|* > M|y|?, it is readily
checked that

[fol? = MIT Y = ATl 72|yl (56)

Moreover, we have J, = Id, which implies that sup{||.J,||';v € [0,¢]} > 1. Relation (56)
thus yields

1 llocsio.0 = Alyl- (57)
Plugging (57) into (55), we thus get
\? Ayl)>
||f1[0,t]||3{ Z UfMt‘yP, with Mt = Z min 1, M

o ||f“j;[o,t]

According to (53) and (54), it is therefore left to prove E[M, "] < oo for all p > 1, uniformly
in t and y. We trivially have

4 271
Mt_l < — max 1, t || HMO’; ’ (58)
A ex (Alyl)~
and by definition of f in (54)
1o < NIV (ZF) o 1yl
Substituting this value in (58) yields

o2 |7 V(Z)

Mt < (59)

4
—max < 1, =
It is thus readily checked that M, ' admits moments of any order uniformly in ¢ and v, thanks
to the fact that || J 'V (Z%)||,.0,4 admits moments of any order. Indeed, similar arguments
as used in [11] to control the p-variation norm of J~! can be used to show that the y-Holder
norm of J~! admits moments of any order. This concludes the proof for m = 0, namely

Iy Hlp < cop™. (60)
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Step 2: case m > 1. Now that we have established (60), the case of higher order deriva-
tives follows from more standard considerations. Indeed, applying elementary rules for the
derivative of the inverse to v, ', we get

d

D(3 )7 = = 3 (7)™ () DA (61)
k=1

Therefore, it is easily seen that, using the definition of ~;,
—1\ij 2 _
DO ) Nl < ca (IDZells + 1D Ze | ye2 )" [l I
Together with (47) and (60) this implies

2
Caky  CqaTh

i 2
Oy 0%

D)7l <

which yields the claim (52) for m = 1. Similarly, by using equation (61) repeatedly, we
obtain the general case of relation (52). O

We can now conclude this section by giving a short proof of the main theorem.

Proof of Theorem 3.4. We plug the estimates (39), (47) and (52) into (38). This easily yields
the claim (35). O

Remark 3.10. Concerning the dependence of the constants ¢, ce in (35) on 7" we note the
following: (i) An analysis of the proof of Proposition 3.7 yields that ¢, can be chosen
independently of the time horizon T'.

(i) The dependence of ¢; on T is less explicit, since it relies on the constant cx appearing in
Hypothesis (2.21), which in turn is intimately linked to the variance of the driving process
X (cf. e.g. Example 5.4). In the case of fractional Brownian motion, Hardy-Littlewood’s
lemma (see e.g [27, Equation (5.20)]) reveals that cx is bounded from below uniformly in 7.

Assuming that this is the case, an analysis of the derivation of (47) shows that ¢y depends

: 2/(141/p)
on T via M*"r for some M > 1.

4. VARADHAN ESTIMATE

Fix a small parameter ¢ € (0, 1], and consider the solution Z; to the stochastic differential
equation

t d t
Zf =z —|—/ V()(Zse)ds + 82/ VZ-(Z:f)dXz, YVt € [O,T], (62)
0 i—1 /0

where, as before, the vector fields Vg, Vi, ..., V; are C°°-bounded vector fields on R™. In this
section we will work under the same assumptions as in Section 3 which are summarized as
follows.

Hypothesis 4.1. Let X be an R%-valued continuous, centered Gaussian process starting at
zero with 1.1.d. components and covariance function R satisfying Hypothesis 2.11. We further
assume that X satisfies Hypothesis 2.18 and 2.21 and that the vector fields Vi, ..., Vy satisfy
Hypothesis 3.1. Without loss of generality we choose T' = 1.
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With Hypothesis 4.1 at hand, we will describe the asymptotic behavior of the density of
Z7 as ¢ = 0. We start by recalling the large deviation setting for rough paths in Section 4.1,
and will complete the estimates in Section 4.2.

4.1. Large deviations setting. Let us first recall that under Hypothesis 4.1, X can be
lifted to a p-rough path with p > 2p. According to the general rough path theory (see, e.g.,
inequality (10.15) and Theorem 15.33 in [17]), for any positive A and § < 2/p we have

exp | A sup |ZF)°
t€[0,1],e€(0,1]

In addition, the Malliavin derivative and Malliavin matrix of Z] can be controlled using the
same arguments as in the previous section. More precisely, replacing the V;’s with €V;’s in
the proof of Propositions 3.8 and 3.9, we have

E < 0. (63)

sup ||Z7 ||k, < oo, foreach k>1andr>1; (64)
e€(0,1]
Izt < ere?, forany r > 1, (65)

where 7z is the Malliavin matrix of Z7.

Denote by J¢ the Jacobian of Z¢. Similar to (30), the process J is the unique solution to
the linear equation

t d t
J§:Idn+/ D%(Z;)Jids+az/ DV;(Z2) 35 dX?.
0 0

Its moments are uniformly bounded (in € € (0, 1]) in the next proposition.

Proposition 4.2. For any n > 1, there exists a finite constant c,) such that the Jacobian J°
satisfies

sup E [||J~f||p 01]} —c, (66)
e€(0,1]

Proof. When ¢ = 1, the integrability of J¢ is proved in [11], and has been recalled in Proposi-
tion 2.27 above. It can be checked that the estimates in [11] only depends on the supremum
norm of the vector fields and their derivatives. In the present case, the vector fields €V in
equation (62) are uniformly bounded in ¢ € (0, 1] together with their derivatives. Hence the
uniform integrability of J¢ (in ) follows. O

In order to state a large deviation type result, let us introduce the so-called skeleton of
equation (62), that is, we introduce the map ® : H — C([0, 1], R™) associating to ecach h € H
the unique solution of the ordinary differential equation

<1>(h)_2+/0 ds+Z/ ))dh. (67)

By the embedding Theorem 2.16, for each h € H, the above equation can be understood in
Young sense. In particular, it follows that there is a unique solution ®.(h). Moreover, ®; is
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a differentiable mapping from H to the space C([0, 1], R™). We let yg, () be the deterministic
Malliavin matrix of ®;(h), that is,

Vi, g = (DR} (h), D] (7)) (68)

Along the same lines, we introduce the Jacobian J(h) of equation (67), that is the unique
solution of the following equation

30 =1, + Y [ Dvic@myamant + [ D@, msmas (©9)

Remark 4.3. For a geometric p-rough path x, it is sometimes convenient to write ®(x)
obtained by solving (67) with h replaced with x. By general theory of rough path, & is
a continuous function of x in the p-variation topology. We will use this notation without
further mention when there is no confusion.

Remark 4.4. Let X be an R%valued Gaussian process satisfying Hypothesis 4.1 and let
h € H be an element of the Cameron-Martin space of X. We use the notation X + A to
denote lift of X + A to a p-rough path. This construction is made possible by the embedding
in Theorem 2.16 and Young’s pairing. We direct the readers to Section 9.4 of [17] for more
details.

We next note that, following the same arguments as in |7|, for each h € H,

1551% (@,(cX + h) — &,(h)) = Ga(h), (70)

in the topology of D> for some random variable G(h). The equation satisfied by G¢(h) is
obtained by formally differentiating (67) with respect to e, which yields

G =3 [ Dv@. )G ma + [ D )G
| )

3 [ Vit wax

Comparing equations (71) and (69), an elementary variational principle argument reveals
that

Gu(h) = Ju(h) / (Lu(h)) Vi (@ (h))d X, (72)

which implies that G(h) is a centered Gaussian random variable. Moreover, starting from
equation (72), some easy computations show that the Malliavin derivative of G;(h) and the
deterministic Malliavin derivative of ® at h coincide. Hence, the covariance matrix of G (h)
is the deterministic Malliavin matrix vy, ().

As a last preliminary step we recall the large deviation principle for stochastic differential
equations driven by Gaussian rough path, which is the basis for Varadhan type estimates
and is standard in rough paths theory (see [17, Section 19.4]).
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Theorem 4.5. Let © be as in (67), Z5 be the solution to equation (62) and set
1
I(y):= inf =|n|% R"™.
()=, int Il Ve

Then Z5 satisfies a large deviation principle with rate function I(y).

Proof. First, it is known (see, e.g., [17, Theorem 15.55]) that £X, as a p-rough path, satisfies
a large deviation principle in the p-variation topology with good rate function given by

B 2HhH— if heH
J(h) = { +00 otherwise.

Moreover, by Remark 4.3, ®;(x) is continuous function of x in p-variation topology. Since
75 = ®1(£X) the result follows from the contraction principle. U

4.2. Asymptotic behavior of the density. Recall that the skeleton ® is defined by (67).
Our density estimates will involve a “distance” which depends on ® as follows

d*(y) =1I(y) = inf —IIhIIH, and  dj(y) = inf IIhIIH (73)

@1 (h)= @1 (h)=y,det vg, (n)>0 2

Interestingly enough, the two distances defined above coincide under the ellipticity assump-
tions.

Lemma 4.6. Assume that Hypothesis 4.1 is satisfied. Then we have d*(y) = d%(y) for every
y € R™

Proof. The claimed identity is mainly due to the uniform ellipticity of the vector fields
V!s. Indeed, pick any h € H such that ®;(h) = y. Recall that J(h) is the Jacobian of
the deterministic equation (67) and v, (n) is the deterministic Malliavin matrix of ® at h.
Similarly to (32) we have

D{®1(h) = Ji(h)(Js(R)) " Vi(®s(h)).

Therefore, owing to the definition (68) of the Malliavin matrix, we get the following identity
for all x € R"

Z xlfth(h

xi(DkéDl(h))i

H

/ / <xTJu1 D, (R)), 2" T (R)V (D, (R)) dR(u,v).
Let us now define a function f by

Under the same assumptions as in Proposition 2.23, which are satisfied due to Hypothesis
4.1, we have the interpolation inequality (see relation (27))

27+« o
1ol ex\ T4y ol

1 ) 2(=) ™ ||f“oo-01
[ [ g = 2ot oy min 1, 22 =
o Jo ! (L4 1 F1550.1)
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Furthermore, the uniform ellipticity condition implies that for any x # 0,

[1f loesfo.1) > 0.
Therefore, the deterministic Malliavin matrix vg,(s) is non-degenerate at h. In conclusion,
for any h € H such that ®,(h) =y we have det ys,(;) > 0 and thus dg(y) = d(y). O

Now we can state the main result of this section, giving the logarithmic asymptotic be-
havior of the density as ¢ — 0.

Theorem 4.7. Let Z¢ be the process defined by (62), and denote by p.(y) the density of Z5.
Due to Hypothesis 4.1, we have

lim &*log p-(y) = —d*(y).
where d is the function defined by (73).

Proof. With the previous estimates in hand, the proof is similar to the one of |7, Theorem
3.2]. For the reader’s convenience, we give some details below. Let us divide the proof in
two steps.

Step 1: Lower bound. We shall prove that
lim inf £ log p. (y) = —dg(y). (74)

To this aim, fix y € R". We only need to show (74) for d%(y) < oo, since the statement
is trivial whenever d%(y) = oo. Next fix an arbitrary n > 0 and let h € H be such that
®y(h) =y and ||h[|F, < di(y) +n. Let f € Cg°(R™). By Cameron-Martin’s theorem for the
Gaussian process X, it is readily checked that

2
_ Iz _X(m

E[f(Z)] = 5 E[f(@(eX +)e |,
where X (h) denotes the Wiener integral of A with respect to X introduced in Section 2.2. We
now proceed by means of a truncation argument: consider a function y € C*°(R), satisfying
0 < x <1, such that x(f) = 0if t € [—2n,2n], and x(t) = 1 if t € [-n,n]. Then, if f > 0,
we have

E[f(Z)] > e 22 B [(eX () f(®1(eX + b))

Hence, by means of an approximation argument applying the above estimate to f = ¢, we
obtain

1op.(0) = - (G +20) + IR E[EX (3 @EX 1) (79

Indeed, for any non-degenerate random vector F, the distribution on Wiener’s space 0, (")
is an element in D~>°, the dual of D>°. The expression E[,(F)G] can thus be interpreted as
the coupling (d,(F'), G) for any G € D> (see |27, Section 2.1.5]).

Let us now bound the right hand side of equation (75). Owing to the fact that ®;(h) =y
and thanks to the scaling properties of the Dirac distribution, it is easily seen that

E(x(¢X ()8, (®1(eX +h))) = "E (x(aX(h))éo (q)l(gX i ? — ‘Dl(m)) :
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In addition, according to the definition (70), we have
el0 €

- Gl(h)>

and recall that we have established, thanks to (72), that G(h) is an n-dimensional random
vector in the first Wiener chaos with variance vs,(,) > 0. Hence, G(h) is non-degenerate
and integrating by parts combined with standard arguments from Malliavin calculus yields

iy | x(ex (i (M=) g 56,001 (76)

€
In particular, we get

1%1 e’ log E(x(eX ()6, (®1(eX + h))) =
Plugging this information in (75) and letting ¢ | 0 we end up with

1
lim inf e*log p-(y) = ~ (glth% + 277) > — (di(y) +3n) .

Since 1 > 0 is arbitrary this yields (74). At this point we can notice that we have chosen h
such that [|h|3, < d%(y) +n in order to get a non degenerate random variable Gy (h) in (76).

Step 2: Upper bound. Next, we show that

lim sup £*log p-(y) < —d*(y). (77)
el0

Towards this aim, fix a point y € R" and consider a function x € C§°(R"),0 < y < 1 such
that x is equal to one in a neighborhood of y. The density of Z] at point y is given by

Pe(y) = E[x(Z7)d,(Z7)]
Next integrate the above expression by parts in the sense of Malliavin calculus thanks to
Proposition 3.5. This yields

E[x(Z7)6,(Z5)] =E [Liz:sp Ha2,...) (25, X(Z5))]
<E [|Hqz,..m)(Z7, x(Z7))]
=E[|Hqp..., (Zi (Z)|1 (s csupprt]
<P(Z; € suppX) | Ho) (25, X(Z5) I,

where % + % = 1. Furthermore, relation (37) and an application of Holder’s inequality (see,
e.g., |27, Proposition 1.5.6]) gives

..... (21 X(Z1)lp < epallvz: 15 IDZEIL, L IX(ZD)I1 -

for some constants 5, v > 0 and integers m, r. Thus, invoking the estimates (64) and (65),
we obtain

IHH€ log | H,...n) (27, X(Z1)llp = 0.

.....

Finally the large deviation prmmple for Z7 recalled in Theorem 4.5 ensures that for small ¢
we have

P(Z5 € suppy)t < e a2 (fempx F@) o)
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Since g can be chosen arbitrarily close to 1 and supp(x) can be taken arbitrarily close to y,
the proof of (77) is now easily concluded thanks to the lower semi-continuity of d.

Combining Lemma 4.6, (74) and (77), the proof of Theorem 4.7 is thus completed. O

5. APPLICATIONS

Our main results, Theorem 3.4 and Theorem 4.7 rely on Hypothesis 2.11, 2.18 and 2.21.
Let us also recall that the density bound (35) involves a coefficient 7 defined by (34). In
this section we provide explicit examples of Gaussian processes satisfying the aforementioned
assumptions and give estimates for 1 as a function of ¢.

Remark 5.1. The interpolation inequalities in Proposition 2.19 and Proposition 2.23 rely
on an integral representation for the Cameron-Martin norm related to X (see relation (12)),
which is satisfied for Gaussian processes starting at zero. We note that this is not a restriction
in applications, since the RDE (2) driven by X is the same as the one driven by X = {X, =
X; — Xo,t > 0}. Moreover, one easily checks that if X satisfies Hypotheses 2.11, 2.18
and 2.21, then so does X.

Remark 5.2. Suppose that X; is a continuous, centered real-valued Gaussian processes with
covariance R. Then

(i) If 9% R < 0 in the sense of distributions, then Hypothesis 2.18, (i) is satisfied.
(i) If 02, = F(|t — s|) for some continuous, non-decreasing function F then Hypothesis
2.18, (ii) is satisfied.
(iii) If X starts at zero, satisfies Hypothesis 2.18, (i) and d,R(a,b) > 0 for a < b in the
sense of distributions, then Hypothesis 2.18, (ii) is satisfied.

Proof. We first note that (i) is proved in [12, Lemma 2.20] and (iii) follows from [10, Section
4.2.1]. For (ii): We have

st 2 2 2 2
2Ruv = 0gy — Ogy + Out — Oyt

= F(lv—s]) = Flu—s|) + F(|t —ul) = F(|t = v]).

Since F' is non-decreasing this implies, for s <u < v <t¢, 2R > 0. ]

With this remark in mind, we are now ready to provide a series of examples to which the
results of Sections 3 and 4 apply.

Example 5.3. Let B be a fractional Brownian motion with Hurst parameter H € (0,1). As
mentioned in Remark 3.3, in this case 7, does not depend on ¢ due to the self-similarity of
B Tt is also shown in [10] that Hypothesis 2.18 and 2.21 are satisfied whenever H € (3, 3).
In |12, Example 2.8] it is proved that B has Holder-controlled mixed (1, p)-variation and
thus Hypothesis 2.11 is satisfied.

Example 5.4. Let X be a d-dimensional centred Gaussian process with i.i.d. components,
such that the coefficient o, defined by (7) satisfies the following relation

o2, =F(]t—s]) >0,
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for some non-negative, concave function F' satisfying F'(0) = 0 and
inf F'(s) > 0. (78)

s€[0,T
We note that if F' is not identically equal to zero, then F'(0) = 0, F' > 0 and concavity imply
that (78) is satisfied for some 7' > 0. In addition, we assume that
Citr < F(t) < Cotr VYt € [0,T), (79)

for some p € [1,2), C1,Cy > 0. Since 2R(s,t) = —F(|t — s|) + F(t) + F(s), concavity of
F and the fact that F' is increasing imply Hypothesis 2.18, due to Remark 5.2. It is readily
checked from [12, Example 2.9 that under assumption (79) we have

Vip(R:[s,t]?) < Clt—s|'”
for some constant C' > 0 and thus X has Holder-controlled mixed (1, p)-variation. Recalling
that o7 := o7 ,, invoking (79) again we obtain
_ V(R [0.1F)

2
0%

<C.

t

In particular, 7 is bounded on [0, T']. Finally, from [12, Theorem 6.1] we have that Hypothesis
2.21 is satisfied with o = 1.

Ezxample 5.5. Let X = Bt 4 B2 bhe a sum of two independent fBm with Hurst parameters
Hy, Hy < 1/2. Then

o2 =t — s 4|t — s = F(|t - ¢])
and the previous example applies.

Ezample 5.6. Consider a bifractional Brownian motion (cf., e.g., [20, 31, 23]), that is, a
centered Gaussian process B'% on [0, T] with covariance function given by!

R(s,1) = g (827 + 1) — [£ = 5P5),

for some H € (0,1) and K € (0, 1] such that HK < 1/2. Since B®X is a self-similar process
with index H K, the coefficient n does not depend on ¢. Hypothesis 2.18 and the fact that
R admits a Hoélder-controlled mixed (1, p)-variation, i.e. Hypothesis 5.2, have been verified
in [12, Example 2.12|. In order to check Hypothesis 2.21 we recall from [12, equation (6.2)],
using Hypothesis 2.18, that

War(X, | Fos V Fir) = 2R ( - ) |

Hence,

2Var (X ¢|Fo,s V Frr) = 2E(X7 — Xo) (X — X5) = 2(R(T,t) — R(T), 5))
— 21_K((t2H + T2H)K o ‘t o T‘2HK) o ((82H 4 T2H)K o ‘8 o T‘2HK))
> 21_K(|$ o T|2HK o |t o T|2HK)
> C(T)|t — s,

which implies Hypothesis 2.21.

I As pointed out, for example, in [23] this process does not fit in the Volterra framework.
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Example 5.7. Consider a random Fourier series?

U(t) = Z apY ¥ sin(kt) + a_yY F cos(kt), t €0, 2],
k=1

with zero-mean, independent Gaussians {Y*; k € Z} with unit variance. Then the covariance
R can be computed in an elementary way

R(s,t) = Z g sin(ks) sin(kt) + a2, cos(ks) cos(kt) (80)

% S (02 + a2,) cos(k(t — 5)) + (a2 — a2,) cos(k(t + 5)).

Let us consider the special case where W is a stationary random field. This implies a2 = o?
and thus

R(s,t) = K(lt —s|), and o7, =2(K(0) = K(|t — s])) = F(Jt — s|),
where the function K is defined by

K(t):=Y ajcos(kt).
k=1
We now wish to prove that this situation can be seen as a particular case of Example 5.4.
For simplicity we concentrate on the model-case

o = Ck~1+p), (81)

for some p € [1,2), C' > 0. For more general conditions on the coefficients we refer to [12,
Section 3|. By [12, Section 3|, K is convex on [0, 27|, decreasing on [0, 7] and %—H'o'lder
continuous. In order to check the conditions of Example 5.4, it remains to verify the lower

bound in (79). We observe

[\)
e
Eall )
»n
-
=}

V)
—
~—

F(t)=K(0)— K(t) = ap(1—cos(kt) =2) o} sm2(%) >

L) 1 1 1 1
2y aiz af%J('_;J - LZJ) 2 af%J L;J Rz te,
k=[ 3]
where we write a 2 b whenever a > ¢b for a universal constant ¢ and where we have used
inequality (81) for the last step. Since F' is not identically equal to zero, it follows that there
is a time 7" € (0,27], such that F' is concave, inf,com £ (s) > 0, F' is %—Hélder continuous
and (79) is satisfied. Hence, by Example 5.4 Hypothesis 2.11, 2.18 and 2.21 are satisfied and
7 is bounded on [0, T7.

2We may ignore the (constant, random) zero-mode in the series since we are only interested in properties
of the increments of the process.
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Example 5.8. Let X be a d-dimensional continuous, centred Gaussian process with i.i.d. com-
ponents. In the following X; denotes one of its components. Assume that X; is a stationary,
zero-mean process with covariance

R(s,t) = K (|t — s|)

for some continuous and positive definite function K. By Bochner’s Theorem there is a finite
positive symmetric measure ;2 on R such that

K(t) = [ costee)ntde)
and thus
o*(t) =05, = 2(K(0) — K(t)) = 4/sin2(t§/2)u(d§).

The case of discrete i corresponds to Example 5.7. Another example is given by the fractional
Ornstein—Uhlenbeck process,

t
X, = / e Nt=w gBH teR.
In this case, it is known that X has a spectral density p(d§) such that

dp |
Frint v (€). (82)

By Theorem 7.3.1 in [26] we have that if K is regularly varying at co, then the coefficient

oy defined by (7) satisfies o7 ~ M as t — 0 which in the case of (82) implies that there
exists a 1" > 0 such that

Cit* < o?(t) < Cot* for all t € [0, 7).

Moreover, it can be seen that there is a 7" > 0 such that K is convex on the interval [0, 7]
(cf. [12, Example 5.3]) and sup,¢o 7 K'(t) < 0. Hence, Hypothesis 2.18 and by [12, equation
(6.2)] Hypothesis 2.21 are satisfied. By [12] we conclude

Vip(B: s, 1%) = O(Jt = s for all [s, ] < [0, 7]
Hence, Hypothesis 2.11 is satisfied and
n < C foralltel0,T].
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